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We study the interaction of discrete (narrow) solitons with impurities in the integrable Ablowitz-Ladik lattice model. Analytical 
solutions are obtained for bright and dark solitons bound to the defect. On-site and inter-site (bond) defects are considered. 
A comparison with the standard discrete nonlinear Schrödinger equation is made. Scattering of the discrete solitons from 
point defects of different types is studied numerically. The model plays an important role in numerous physical systems, 
especially when the corresponding elementary excitations obey Pauli statistics. 
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1. Introduction 
 
Many problems in the nonlinear dynamics of spatially 

extended physical systems involve continuous media, so 
that nonlinear coherent excitations (solitons) are naturally 
described as solutions to partial differential equations, e.g. 
the nonlinear Schrödinger (NLS) equation. However, 
models describing microscopic phenomena in solid-state 
physics are inherently discrete, with the lattice spacing 
between the atomic sites being a fundamental physical 
parameter. For these systems, an accurate microscopic 
description involves a large set of coupled ordinary 
differential equations. Defects and discreteness effects 
may modify drastically the dynamics of the localized 
nonlinear excitations, even in the framework of the 
simplest models. Spatially localized modes of the discrete 
nonlinear lattice equations, called discrete solitons, have 
appeared in many areas of physics, such as biophysics, 
nonlinear optics, solid state physics, and more recently in 
the studies of Bose-Einstein condensates in optical lattices 
and photonic-crystal waveguides. Widely investigated are 
the standard discrete nonlinear Schrödinger (DNLS) 
equation, as well as the completely integrable discrete 
Ablowitz-Ladik (AL) equation [1-7]. Although the two 
equations have the same linear properties and yield the 
same NLS equation in the continuum limit, their nonlinear 
properties are different. This leads to differences in the 
dynamics of narrow discrete solitons for the two models. 

A problem of continuing interest due to its theoretical 
and practical importance is the interaction of solitons with 
impurities. Extensively studied is the interaction of 
solitons with different point defects (linear, nonlinear and 
bond) for the DNLS equation [2,8,9]. Within the AL 
model, only the interaction of solitons with on-site defects 
has been considered [2,5]. This model is important for 
excitations which obey the Pauli statistics, like spin waves 
or electron excitons [10-12]. The soliton dynamics in 
coupled Ablowitz-Ladik chains was studied in [13]. 

In the present work, we investigate in detail the 
interaction of solitons with impurities in an AL chain. 
Analytical bound soliton-defect solutions are derived and 
their stability is analysed. The scattering of solitons from 
defects is studied numerically for different soliton 
velocities and impurity parameters. 

 
 
2. Lattice NLS equations 

 
We start with a generalized set of ordinary differential 

equations describing a hypothetical model of 
intramolecular excitations with the amplitude )(tnα  in a 
discrete chain with nearest-neighbour interactions:  
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For methodological reasons, we have included three 

different nonlinear terms which correspond to different 
physical systems. The lattice constant equals unity. For 
molecular crystals, the case g = 0, γ = -1 describes 
electronic excitations obeying Pauli statistics [12], where 
M is the intermolecular interaction and J the nonlinear 
dynamic interaction. There are two competing nonlinear 
terms – the dynamic (~ J) and the kinematic (~ M). If the 
dynamic interaction is small and can be neglected, then 
Eq. (1) turns into the AL equation which is completely 
integrable and has a bright soliton solution for γ = 1 
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and a dark soliton solution for γ = - 1 
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L, v, k, and ω are the width, velocity, wavenumber and 
frequency of the soliton, respectively. 

For J = γ = 0, Eq. (1) describes the dynamics of Bose-
type excitations with a nonlinear constant g [9]. In this 
case, (1) has the form of the standard DNLS equation 
which is nonintegrable and can have stable soliton 
solutions only for wide solitons )1( >>L . Important 
differences between the solutions of the AL and DNLS 
equations are that in the AL equation the velocity depends 
on L and that the type of soliton solution of the AL 
equation remains the same in the whole Brillouin zone (0 
≤ k ≥ π), while the solution of the DNLS equation changes 
from a bright to a dark soliton or vice-versa at k= π/2.   

In the continuum limit ),()( txtn αα → , (1) turns into 
the nonlinear Schrödinger equation  
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with a composite nonlinear constant )( gJMG ++= γ , 
which is completely integrable and, depending on the sign 
of M/G, has bright or dark soliton solutions. 

Equations similar to (1), containing a number of 
nonlinear terms, have been derived for magnetic chains 
(see e.g. [10,11]). 

In what follows, we shall consider a chain containing 
a guest molecule with different parameters at site 0=n . 
This will lead to additional terms in Eq. (1) corresponding 
to linear, nonlinear and bond defects. Our numerical 
results have shown that defects in the nonlinear terms J 
and g do not play an important role. Thus, we concentrate 
on the following equation (J = 0):  
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where ε  and μ  characterize the impurity. For 

0,0 ≠= γg , Eq. (5) corresponds to the perturbed AL 
equation, and for 0,0 =≠ γg  to the perturbed DNLS 
equation. Note that ε  corresponds to a linear on-site 
defect, while μ  introduces two neighbouring inter-site 
linear and nonlinear defects. 

We shall investigate the interaction of solitons with 
localized defects with nonzero με , . Positive values of the 
defect parameters correspond to repulsion, while negative 
values correspond to attraction.  

 
 
 

 

3. Bound soliton-defect solutions 
 
Now, we investigate the static case 0== vk . For the 

Ablowitz-Ladik model with linear on-site defects 
( 0,0 =≠ με ), Eq. (5) possesses the following exact 
bound soliton-defect solutions: 

For  γ = 1, g = 0 
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For  γ = -1, g = 0 
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If 0>Δ , the function |)(| tnα  has a single maximum 

for (6) (minimum for (7)) at 0=n , and if 0<Δ  there are 
two maxima for (6) (two minima for (7)) at Ln Δ±= .  

Similar bound soliton-defect solutions hold for the 
perturbed DNLS equation with linear on-site defects in the 
wide soliton limit )1( >>L . 
For  γ = 0, g = M 
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For   γ = 0, g = -M 
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Fig. 1. Evolution    of    narrow    bound    soliton-defect 
solutions of the DNLS equation (8) [(a), (b)] and of the 
AL   equation   (8) [(c),   (d)].  ε = 0.75  correspond  to 
repulsion [(a), (c)] and ε = -0.75 – to attraction [(b), 

(d)]. M = -2, L = 2.5. The time is in units of 103. 
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In what follows, we present results of the numerical 
solution of Eq. (5) for narrow solitons with the initial form 
(6) or (8). Fig. 1 shows the results for bright solitons for 
the two types of discrete equation with a linear impurity. 
As can be expected, the solutions (6) for the AL model are 
stable [Fig.1(c), (d)], while the two-peak solution for the 
DNLS model (8) exhibits oscillations due to the violation 
of the wide-soliton limit [Fig. 1(a)]. The single-peak 
solutions for 0,0 >Δ<ε  [Fig. 1(b), (d)] correspond to 
soliton-defect attraction, while the double-peak solutions 
with 0,0 <Δ>ε  [Fig. 1(a), (c)] correspond to repulsion. 
However, deviations in the initial form or position of the 
input solution from (6) or (8) have different effects on 
their stability. Our numerical simulations showed that the 
single-peak solution is stable against perturbations, while 
the double-peak solution is unstable and easily destroyed. 
Similar results have been obtained for dark solitons of the 
form (7) or (9). 

Now, we study the influence of bond defects 
( 0,0 ≠= με ) on the soliton solutions. For the standard 
DNLS model and wide solitons, the problem was 
considered in [14] in detail. Here we concentrate on 
narrow solitons within the AL model. The input solution is 
chosen in the form (6) with ε = 2μ (the guest molecule 
alters the interaction energy with the two neighbours). 
Results for different values of μ are presented in Fig. 2. 
When the bond defect is repulsive, the soliton maxima 
oscillate [Fig. 2(a) and (b)], the oscillation period increases 
with the defect strength, and for great enough values the 
bound state splits into two solitons which propagate with 
opposite velocities [Fig. 2(c)]. For attractive defects, the 
soliton bound state is more stable and the amplitude 
exhibits small oscillations [Fig. 2(d)].  

 
(a) (b)

(c) (d)

 
 

Fig. 2. Evolution  of  a  bound  soliton-defect  solution (6)     
(ε = 2μ)   for  the  AL model with two neighbouring bond 
defects:     (a)    μ = 0.2;   (b)   μ = 0.22;   (c)   μ = 0.24;             

(d) μ = -0.24. All other parameters are the same as in 
Fig. 1. 

 
In the static case, for wide solitons (L >> 1) the two 

modified intermolecular bonds are equivalent to a linear 
point defect with strength 2μ.  

 

4. Scattering of Ablowitz-Ladik solitons from  
     defects 

 
Of considerable interest is the scattering of solitons 

from defects. The scattering of slow and fast wide solitons 
from point defects was investigated in [9]. Here we 
consider the interaction of AL solitons of the form (2) with 
defects. This allows us to study narrow solitons with an 
arbitrary wavenumber k in the Brillouin zone (0 ≤ k ≥ π). 
The evolution depends strongly on the initial soliton 
velocity which is related to k through (2) and on the sign 
of the defect. The more interesting case is when the defect 
is attractive (ε, μ < 0) (Fig. 3).  
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Fig. 3. Scattering   of   AL   solitons   (2)  with  different 
velocities from attractive bond defects with μ= -0.5 [(a) - 
(d)] and from a comparable on-site defect with ε =2μ=  -
1 [(a’) - (d’)]. (a), (a’) correspond to v = 0.21; (b), (b’) 
to v = 0.99; (c), (c’) to v = 1.73; (d), (d’) to v = 2.05. 

 
 

For a given value of the defect and small initial 
velocities (v < 0.2) the soliton is completely reflected. 
With the increase in the velocity, a part of the soliton is 
trapped [Fig. 3(a), (a’)]. A further increase in the velocity 
yields transmission + trapping + reflection [Fig. 3(b), (b’)]. 
For larger values of the velocity, the soliton is almost 
totally transmitted [Fig. 3 (c), (c’)]. Approaching the 
maximum value of the velocity v = 2.05 which 
corresponds to wavenumbers from the centre of the 
Brillouin zone (k = π/2), the soliton passes unchanged 
through the bond defect [Fig. 3 (d)], but for the linear 
defect a part of it is reflected [Fig. 3(d’)]. So, in the whole 
range of initial velocities, the scattering from bond defects 
differs from the scattering from on-site defects with 
comparable strength. As a whole, linear on-site defects 
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with comparable strength to bond defects induce stronger 
perturbations. This is due to the different velocity 
dependence of the corresponding perturbing terms. The 
difference in the scattering pattern of narrow slow solitons 
from on-site and bond defects [Fig. 3(a), (a’)] vanishes for 
wide and slow solitons [9].  
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